Новости > Цифровая экономика

25.11.2019

Лучшие проекты по сквозным технологиям отберут на конкурсе фонда «Сколково»

Победители получат гранты, покрывающие до 50% затрат на реализацию пилотных проектов
Конкурс фонда «Сколково» определит лучшие проекты по внедрению сквозных цифровых технологий, сообщает пресс-служба фонда.

К участию в отборе допускаются российские организации, планирующие внедрение отечественных продуктов, сервисов и платформенных решений, созданных на базе сквозных цифровых технологий. Требования к участникам отбора и к проектам, а также критерии оценки заявок и другие условия отбора установлены конкурсной документацией. 

Для участия в конкурсном отборе необходимо подать заявку до 16 часов  28 ноября. Заявка подается путем направления подписанной скан-копии заявки на адрес электронной почты Фонда «Сколково» dtech@sk.ru с указанием уникального идентификатора проекта (УИП). Получить идентификатор проекта и скачать все документы можно на странице конкурса.

Конкурс проходит в рамках федерального проекта «Цифровые технологии» национальной программы «Цифровая экономика». Отбор проектов станет регулярным и продолжится в 2020 и 2021 годах. До 2022 года фонд «Сколково» предоставит победителям финансовую поддержку на реализацию пилотных проектов в объеме более 16 млрд рублей. Фонд в рамках соглашения с Минкомсвязи РФ осуществляет функции оператора поддержки проектов по преобразованию приоритетных отраслей и в этих целях выполняет поиск, экспертизу, отбор, мониторинг таких проектов, а также предоставляет гранты на финансовую поддержку пилотных проектов.

Гранты получат компании, внедряющие проекты по цифровой трансформации своего производства и бизнеса. В качестве заказчиков они должны привлекать российских разработчиков с технологиями, готовыми к промышленному внедрению. «Конкурс направлен на стимулирование спроса со стороны крупных компаний к реализации проектов по первому внедрению новых комплексных технологических решений. Это поможет как сколковским, так и иным стартапам в партнерстве с заказчиком отшлифовать на примере такого внедрения свои технологии для их последующего тиражирования. Компенсируя до 50% расходов на пилотное промышленное внедрение, мы обеспечим для таких решений сокращение порога входа на рынок», – рассказал председатель правления Фонда «Сколково» Игорь Дроздов.

В 2019 году в поддержке сквозных цифровых технологий участвуют пять операторов: Министерство промышленности и торговли, Фонд «Сколково», Российская венчурная компания, Фонд содействия инновациям и Российский фонд развития информационных технологий.

«До нового года мы узнаем имена первых победителей и поймем, какие инновационные проекты будут реализованы в ближайшие три года», – отметил замминистра цифрового развития, связи и массовых коммуникаций России Евгений Кисляков.

В рамках Национальной технологической инициативы сквозные технологии были определены как ключевые научно-технические направления, которые оказывают наиболее существенное влияние на развитие рынков. По сути же, к сквозным относятся те технологии, которые одновременно охватывают несколько трендов или отраслей.

- Большие данные
- Нейротехнологии и искусственный интеллект
- Системы распределенного реестра
- Квантовые технологии
- Новые производственные технологии
- Промышленный интернет
- Компоненты робототехники и сенсорика
- Технологии беспроводной связи
- Технологии виртуальной и дополненной реальностей.

Большие данные (англ. big data) — обозначение структурированных и неструктурированных данных огромных объёмов и значительного многообразия, эффективно обрабатываемых горизонтально масштабируемыми (scale-out) программными инструментами, появившимися в конце 2000-х годов и альтернативных традиционным системам управления базами данных и решениям класса Business Intelligence.

В широком смысле о «больших данных» говорят как о социально-экономическом феномене, связанном с появлением технологических возможностей анализировать огромные массивы данных, в некоторых проблемных областях — весь мировой объём данных, и вытекающих из этого трансформационных последствий.

Большие данные предполагают нечто большее, чем просто анализ огромных объемов информации. Проблема не в том, что организации создают огромные объемы данных, а в том, что бóльшая их часть представлена в формате, плохо соответствующем традиционному структурированному формату БД, — это веб-журналы, видеозаписи, текстовые документы, машинный код или, например, геопространственные данные. Всё это хранится во множестве разнообразных хранилищ, иногда даже за пределами организации. В результате корпорации могут иметь доступ к огромному объему своих данных и не иметь необходимых инструментов, чтобы установить взаимосвязи между этими данными и сделать на их основе значимые выводы. Добавьте сюда то обстоятельство, что данные сейчас обновляются все чаще и чаще, и вы получите ситуацию, в которой традиционные методы анализа информации не могут угнаться за огромными объемами постоянно обновляемых данных, что в итоге и открывает дорогу технологиям больших данных.

В сущности понятие больших данных подразумевает работу с информацией огромного объема и разнообразного состава, весьма часто обновляемой и находящейся в разных источниках в целях увеличения эффективности работы, создания новых продуктов и повышения конкурентоспособности. Консалтинговая компания Forrester дает краткую формулировку: Большие данные объединяют техники и технологии, которые извлекают смысл из данных на экстремальном пределе практичности.

Нейротехнологии 
Нейротехнологии рассматривают мозг как нейросеть, то есть совокупность соединенных между собой нейронов. Нейронные сети можно разделить на два типа: «мокрые» и «сухие». «Мокрые» — биологические нейронные сети, которые находятся у нас в голове, а «сухие» — искусственные; математические модели, построенные по принципу биологических нейронных сетей, способные решать весьма сложные задачи и самообучаться.

Наиболее перспективные отрасли нейротехнологий:

Нейрофармакология. Развитие генной и клеточной терапии, ранняя персонализированная диагностика, лечение и предотвращение нейродегенеративных заболеваний (старческое слабоумие, болезнь Альцгеймера и т. д.), а также улучшение умственных способностей у здоровых людей.

Нейромедтехника. Развитие нейропротезирования органов, включая искусственные органы чувств, разработка средств для реабилитации с применением нейротехнологий, которые помогают разрабатывать утратившую подвижность конечность.

Нейрообразование. Развитие нейроинтерфейсов и технологий виртуальной и дополненной реальности в обучении, разработка образовательных программ и устройств, создание устройств для усиления памяти и анализа использования ресурсов мозга.

Нейроразвлечения и спорт. Развитие брейн-фитнеса — упражнений для мозга, создание игр с использованием нейрогаджетов, в том числе нейроразвивающих игр.

Нейрокоммуникации и маркетинг. Развитие технологий нейромаркетинга (комплекса методов изучения поведения покупателей, возможностей воздействия на него, а также реакций на подобное воздействие с использованием нейротехнологий), прогнозирование поведения на основе нейро- и биометрических данных.

Нейроассистенты. Развитие технологии понимания естественного языка, разработка глубокого машинного обучения (машинного обучения, основанного на нейросетях, которые помогают усовершенствовать такие алгоритмы, как распознавание речи, компьютерное зрение и обработка естественного языка), создание персональных электронных ассистентов (веб-сервисов или приложений, исполняющих роль виртуального секретаря) и гибридного человеко-машинного интеллекта.

Искусственный интеллект (ИИ; англ. Artificial intelligence, AI) —  свойство интеллектуальных систем выполнять творческие функции, которые традиционно считаются прерогативой человека. Сейчас к ИИ относят ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как это делал бы размышляющий над их решением человек. Основные свойства ИИ — это понимание языка, обучение и способность мыслить и, что немаловажно, действовать.

Искусственный интеллект – комплекс родственных технологий и процессов, развивающихся качественно и стремительно, например:
- обработка текста на естественном языке
- машинное обучение
- экспертные системы
- виртуальные агенты
- системы рекомендаций
Это помогает выстроить качественно новый клиентский опыт и процесс взаимодействия.

Можно выделить два направления развития ИИ:
- решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека;
- создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества.

Блокчейн
Блокчейн (цепочка блоков) — это распределенная база данных, у которой устройства хранения данных не подключены к общему серверу. Эта база данных хранит постоянно растущий список упорядоченных записей, называемых блоками. Каждый блок содержит метку времени и ссылку на предыдущий блок.

Применение шифрования гарантирует, что пользователи могут изменять только те части цепочки блоков, которыми они «владеют» в том смысле, что у них есть закрытые ключи, без которых запись в файл невозможна. Кроме того, шифрование гарантирует синхронизацию копий распределенной цепочки блоков у всех пользователей.

В технологию блокчейн изначально заложена безопасность на уровне базы данных. Концепцию цепочек блоков предложил в 2008 г. Сатоши Накамото (Satoshi Nakamoto). Впервые реализована она была в 2009 г. как компонент цифровой валюты — биткоина, где блокчейн играет роль главного общего реестра для всех операций с биткоинами. Благодаря технологии блокчейна биткоин стал первой цифровой валютой, которая решает проблему двойных расходов (в отличие от физических монет или жетонов, электронные файлы могут дублироваться и тратиться дважды) без использования какого-либо авторитетного органа или центрального сервера.

Безопасность в технологии блокчейн обеспечивается через децентрализованный сервер, проставляющий метки времени, и одноранговые сетевые соединения. В результате формируется база данных, которая управляется автономно, без единого центра. Это делает цепочки блоков очень удобными для регистрации событий (например, внесения медицинских записей) и операций с данными, управления идентификацией и подтверждения подлинности источника.

Каждый человек может разместить в Интернете информацию, а затем другие люди могут получить к ней доступ из любой точки мира. Цепочки блоков позволяют отправлять в любую точку мира, где будет доступен файл блокчейна, какие-либо ценности. Но у вас должен быть закрытый ключ, созданный по криптографическому алгоритму, чтобы разрешить вам доступ только к тем блокам, которыми вы «владеете».

Предоставляя кому-либо ваш закрытый ключ, вы по сути передаете этому лицу денежную сумму, которая хранится в соответствующем разделе цепочки блоков.

Кроме того, реализуется еще одна важная функция: установка отношений доверия и подтверждение подлинности личности, потому что никто не может изменять цепочку блоков без соответствующих ключей. Изменения, не подтвержденные этими ключами, отклоняются. Конечно, ключи (как и физическая валюта) теоретически могут быть украдены, но защита нескольких строк компьютерного кода обычно не требует больших затрат.

Это означает, что основные функции, выполняемые банками: проверка подлинности личности (для предотвращения мошенничества) и последующая регистрация сделок (после чего они становятся законными) — могут выполняться цепочкой блоков быстрее и точнее.

Технология блокчейн предлагает заманчивую возможность избавиться от посредников. Она может взять на себя все три важные роли, которые традиционно играет сектор финансовых услуг: регистрация сделок, подтверждение подлинности личности и заключение контрактов.

Квантовые технологии
Квантовая технология — область физики, в которой используются специфические особенности квантовой механики, прежде всего квантовая запутанность. Цель квантовой технологии состоит в том, чтобы создать системы и устройства, основанные на квантовых принципах, к которым обычно относят следующие:

Дискретность (квантованность) уровней энергии (квантово-размерный эффект, квантовый эффект Холла)
Принцип неопределённости Гейзенберга
Квантовая суперпозиция чистых состояний систем
Квантовое туннелирование через потенциальные барьеры
Квантовую сцепленность состояний
К возможным практическим реализациям относят квантовые вычисления и квантовый компьютер, квантовую криптографию, квантовую телепортацию, квантовую метрологию, квантовые сенсоры, и квантовые изображения.

Новые производственные технологии
Новые производственные технологии – это комплекс процессов проектирования и изготовления на современном технологическом уровне кастомизированных (индивидуализированных) материальных объектов (товаров) различной сложности, стоимость которых сопоставима со стоимостью товаров массового производства.

Включают в себя:
новые материалы
цифровое проектирование и моделирование, включая бионический дизайн
суперкомпьютерный инжиниринг
аддитивные и гибридные технологии.

Промышленный интернет
Промышленный интернет (индустриальный интернет вещей, индустриальный интернет, Industrial Internet of Things, IIoT) – концепция построения инфокоммуникационных инфраструктур, подразумевающая подключение к сети Интернет любых небытовых устройств, оборудования, датчиков, сенсоров, автоматизированной системы управления технологическим процессом (АСУ ТП), а также интеграцию данных элементов между собой, что приводит к формированию новых бизнес-моделей при создании товаров и услуг, а также их доставке потребителям.

Ключевым драйвером реализации концепции «Промышленного интернета» является повышение эффективности существующих производственных и технологических процессов, снижение потребности в капитальных затратах. Высвобождающиеся таким образом ресурсы компаний формируют спрос на решения в сфере Промышленного интернета.

В систему интернета вещей сегодня вовлекаются все необходимые для его функционирования звенья: производители датчиков и других устройств, программного обеспечения, системные интеграторы и организации-заказчики (причем как B2B, так и B2G), операторы связи.

Внедрение промышленного интернета оказывает значительное влияние на экономику отдельных компаний и страны в целом, способствует повышению производительности труда и росту валового национального продукта, положительным образом сказывается на условиях труда и профессиональном росте сотрудников. Сервисная модель экономики, которая создается в процессе этого перехода, основывается на цифровизации производства и иных традиционных отраслей, обмене данными между различными субъектами производственного процесса и аналитике больших объемов данных.

Робототехника
Робототехника — прикладная наука, занимающаяся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой интенсификации производства. Робот — это программируемое механической устройство, способное выполнять задачи и взаимодействовать с внешней средой без помощи со стороны человека.

Робототехника опирается на такие дисциплины, как электроника, механика, телемеханика, механотроника, информатика, а также радиотехника и электротехника. Выделяют строительную, промышленную, бытовую, медицинскую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.

Сенсорика
Сенсорика роботов (система чувствительных датчиков) обычно копирует функции органов чувств человека: зрение, слух, обоняние, осязание и вкус. Чувство равновесия и положения тела в пространстве, как функция внутреннего уха, иногда считаются шестым чувством. Функционирование биологических органов чувств базируется на принципе нейронной активности, в то время как чувствительные органы роботов имеют электрическую природу.

Можно характеризовать искусственные сенсоры по их отношению к природным органам чувств, но обычно классы сенсорных устройств выделяются по типу воздействия, на которое данный сенсор реагирует: свет, звук, тепло и т. д. Типы сенсоров, встроенных в робота, определяются целями и местом его применения.

Чувствительный элемент датчика сам по себе может называться сенсором. Датчики используются во многих отраслях экономики — добыче и переработке полезных ископаемых, промышленном производстве, транспорте, коммуникациях, логистике, строительстве, сельском хозяйстве, здравоохранении, науке и других отраслях — являясь в настоящее время неотъемлемой частью технических устройств.

В последнее время в связи с удешевлением электронных систем всё чаще применяются датчики со сложной обработкой сигналов, возможностями настройки и регулирования параметров и стандартным интерфейсом системы управления. Имеется определённая тенденция расширительной трактовки и перенесения этого термина на измерительные приборы, появившиеся значительно ранее массового использования датчиков, а также по аналогии — на объекты иной природы, например, биологические.

В автоматизированных системах управления датчики могут выступать в роли инициирующих устройств, приводя в действие оборудование, арматуру и программное обеспечение. Показания датчиков в таких системах, как правило, записываются на запоминающее устройство для контроля, обработки, анализа и вывода на дисплей или печатающее устройство. Огромное значение датчики имеют в робототехнике, где они выступают в роли рецепторов, посредством которых роботы и другие автоматические устройства получают информацию из окружающего мира и своих внутренних органов.

Беспроводная связь
Беспроводная связь (беспроводная передача данных) — связь, которая осуществляется в обход проводов или других физических сред передачи. К примеру, беспроводной протокол передачи данных Bluetooth работает «по воздуху» на небольшом расстоянии. Wi-Fi — еще один способ передачи данных (интернет) по воздуху. Сотовая связь также относится к беспроводной. Хотя протоколы беспроводной связи улучшаются год от года, по своим основным показателям и скорости передачи они пока не обходят проводную связь. Хотя большие надежды на этом поле показывает сеть LTE и её новейшие итерации.

Виртуальная реальность
Виртуальная реальность (ВР, англ. virtual reality, VR, искусственная реальность) — созданный техническими средствами мир (объекты и субъекты), передаваемый человеку через его ощущения: зрение, слух, обоняние, осязание и другие. Виртуальная реальность имитирует как воздействие, так и реакции на воздействие. Для создания убедительного комплекса ощущений реальности компьютерный синтез свойств и реакций виртуальной реальности производится в реальном времени.

Объекты виртуальной реальности обычно ведут себя близко к поведению аналогичных объектов материальной реальности. Пользователь может воздействовать на эти объекты в согласии с реальными законами физики (гравитация, свойства воды, столкновение с предметами, отражение и т. п.). Однако часто в развлекательных целях пользователям виртуальных миров позволяется больше, чем возможно в реальной жизни (например: летать, создавать любые предметы и т. п.).

Системами «виртуальной реальности» называются устройства, которые более полно по сравнению с обычными компьютерными системами имитируют взаимодействие с виртуальной средой, путём воздействия на все пять имеющихся у человека органов чувств.

Дополненная реальность
Дополненная реальность (англ. augmented reality, AR — «дополненная реальность») — результат введения в поле восприятия любых сенсорных данных с целью дополнения сведений об окружении и улучшения восприятия информации.

Дополненная реальность — воспринимаемая смешанная реальность (англ. mixed reality), создаваемая с использованием «дополненных» с помощью компьютера элементов воспринимаемой реальности (когда реальные объекты монтируются в поле восприятия).

Среди наиболее распространенных примеров дополнения воспринимаемой реальности — параллельная лицевой цветная линия, показывающая нахождение ближайшего полевого игрока к воротам при телевизионном показе футбольных матчей, стрелки с указанием расстояния от места штрафного удара до ворот, «нарисованная» траектория полета шайбы во время хоккейного матча, смешение реальных и вымышленных объектов в кинофильмах и компьютерных или гаджетных играх и т. п. 

#сквозные технологии, #цифровая экономика, #Фонд «Сколково»

Еще по теме

23.01.2020 В центре компетенций по кадрам для цифровой экономики рассказали о цифровых образовательных возможностях для молодых матерей

21.01.2020 Институты развития завершили отбор компаний, которые получат гранты на сквозные цифровые технологии

20.01.2020 Михаил Мишустин объявил о планах продвижения отечественных платформ на внешних рынках

13.01.2020 Фонд содействия инновациям начал прием заявок на конкурсы по программе «Развитие»

10.01.2020 Определены лидирующие исследовательские центры и компании-лидеры по сквозным цифровым технологиям

27.12.2019 На развитие сквозных цифровых технологий будут предоставляться кредиты по льготным ставкам

25.12.2019 В России заработал образовательный ресурс цифроваяграмотность.рф

24.12.2019 Развитие беспилотного транспорта включено в проект «Цифровой транспорт и логистика»

17.12.2019 В «дорожную карту» по квантовым вычислениям заложено создание квантового компьютера и софта к нему

13.12.2019 В России принят кодекс этики использования данных

string(3) "!!!" array(14) { ["ID"]=> string(4) "3898" ["~ID"]=> string(4) "3898" ["NAME"]=> string(100) "Цифровое развитие регионов – от практиков и экспертов" ["~NAME"]=> string(100) "Цифровое развитие регионов – от практиков и экспертов" ["DATE_CREATE"]=> string(19) "12.11.2019 20:31:56" ["~DATE_CREATE"]=> string(19) "12.11.2019 20:31:56" ["PROPERTY_LINK_VALUE"]=> string(34) "https://rf2035.net/labs/faculty/2/" ["~PROPERTY_LINK_VALUE"]=> string(34) "https://rf2035.net/labs/faculty/2/" ["PROPERTY_LINK_VALUE_ID"]=> string(5) "13039" ["~PROPERTY_LINK_VALUE_ID"]=> string(5) "13039" ["PREVIEW_PICTURE"]=> string(4) "4044" ["~PREVIEW_PICTURE"]=> string(4) "4044" ["SORT"]=> string(3) "500" ["~SORT"]=> string(3) "500" }

Принять участие

Мероприятия НТИ

Подписка на обновления

«Информбюро 20.35» делает почтовую рассылку самых интересных публикаций один раз в неделю. Чтобы подписаться на нее, зарегистрируйтесь или войдите через свою учетную запись на платформе leader-id.ru.